Capillary tone: cyclooxygenase, shear stress, luminal glycocalyx, and hydraulic conductivity (Lp)

نویسندگان

  • Donna A Williams
  • Mary H Flood
چکیده

Control of capillary hydraulic conductivity (Lp) is the physiological mechanism that underpins systemic hydration. Capillaries form the largest surface of endothelial cells in any species with a cardiovascular system and all capillaries are exposed to the flow-induced force, shear stress (τ). Vasoactive molecules such as prostacyclin (cyclooxygenase product, COX) are released from endothelial cells in response to τ. Little is known about how COX activity impacts capillary Lp. The purpose here was to assess Lp in situ following an acute Δτ stimulus and during COX1/COX2 inhibition. Mesenteric true capillaries (TC) of Rana pipiens (pithed) were cannulated for Lp assessment using the modified Landis technique. Rana were randomized into Control and Test groups. Two capillaries per animal were used (perfusate, 10 mg·mL(-1) BSA/frog Ringer's; superfusate, frog Ringer's or indomethacin (10(-5) mol·L(-1)) mixed in frog Ringer's solution). Three distinct responses of Lp to indomethacin (TC2) were demonstrated (TC1 and TC2 medians: Test Subgroup 1, 3.0 vs. 1.8; Test Subgroup 2, 18.2 vs. 2.2; Test Subgroup 3, 4.2 vs. 10.2 × 10(-7) cm·sec(-1)·cm H2O(-1)). Multiple regression analysis revealed a relationship between capillary Lp and systemic red blood cell concentration or hematocrit, plasma protein concentration, and Δτ (Test Subgroup 1, R(2) = 0.59, P < 0.0001; Test Subgroup 2, R(2) = 0.96, P = 0.002), but only during COX inhibition. Maintaining red blood cell and plasma protein levels within a normal range may control barrier function in a healthy state. Recovering barrier function may be an unrecognized benefit of transfusions during blood loss or edema formation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The endothelial glycocalyx mediates shear-induced changes in hydraulic conductivity.

Recent in vitro and in vivo studies have reported fluid shear stress-induced increases in endothelial layer hydraulic conductivity (L(p)) that are mediated by an increased production of nitric oxide (NO). Other recent studies have shown that NO induction by shear stress is mediated by the glycocalyx that decorates the surface of endothelial cells. Here we find that a selective depletion of the ...

متن کامل

High Glucose Attenuates Shear-Induced Changes in Endothelial Hydraulic Conductivity by Degrading the Glycocalyx

Diabetes mellitus is a risk factor for cardiovascular disease; however, the mechanisms through which diabetes impairs homeostasis of the vasculature have not been completely elucidated. The endothelium interacts with circulating blood through the surface glycocalyx layer, which serves as a mechanosensor/transducer of fluid shear forces leading to biomolecular responses. Atherosclerosis localize...

متن کامل

Heparan sulfates mediate pressure-induced increase in lung endothelial hydraulic conductivity via nitric oxide/reactive oxygen species.

We investigated the nonlinear dynamics of the pressure vs. hydraulic conductivity (L(p)) relationship in lung microvascular endothelial cells and demonstrate that heparan sulfates, an important component of the endothelial glycocalyx, participate in pressure-sensitive mechanotransduction that results in barrier dysfunction. The pressure vs. L(p) relationship was complex, possessing both time- a...

متن کامل

Capillary hydraulic conductivity is elevated by cGMP-dependent vasodilators.

Microvascular functions have been shown to be sensitive to agents associated with changes in cyclic nucleotide levels. The central hypothesis of the current study was that one measure of capillary exchange capacity, hydraulic conductivity (Lp), would be elevated by agents shown to elevate cellular levels of cGMP. To evaluate the hypothesis, frog mesenteric capillary Lp was measured during lumin...

متن کامل

Regulation of capillary hydraulic conductivity in response to an acute change in shear.

The effects of mechanical perturbations (shear stress, pressure) on microvascular permeability primarily have been examined in micropipette-cannulated vessels or in endothelial monolayers in vitro. The objective of this study is to determine whether acute changes in blood flow shear stress might influence measurements of hydraulic conductivity (L(p)) in autoperfused microvessels in vivo. Rat me...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2015